ridge road map
Get

ridge road map 2011-2019

Get Form

Video instructions and help with filling out and completing ridge road map

Instructions and Help about ridge road map

Hey everybody this JJ and this is going to be a real quick lesson on how to read contour lines and unfortunately I haven't figured out a great way to to do this and to show you the graphic representations so that it makes it easy to understand so what I've gone to is just basically taken some images from some old survival manuals so that is going to be what we're going to take a look at here first okay so essentially contour lines basically measure the distance from sea level they measure elevation but their shape also gives you an indication of what kind of terrain feature you're looking at now there are three different kinds of contour lines you have the index contour line which as you see in this picture here has the elevation marked on it then you have what is the most common that you'll see the most of is the intermediate contour lines and those are not labeled and then you'll have the dotted supplementary lines now supplementary lines are generally only used when you have kind of a flat elevation okay so contour lines as you can see in this picture here are basically what is enables you to determine elevation when you're looking at a 3d object like the hills on the top you can see how you can look how you can read that in a 2d form down at the bottom so contour lines are basically just like it looks in a picture they're basically a big for lack of a better word circles you know that follow the same elevation around a contour feature and no matter how weird shaped a mountain is or whatever their contour line is always going to close back into itself because it follows that same line of elevation and you can determine what a terrain feature you're looking at based on the shape of those contour features and so we'll go ahead and get started with the most basic of those which is the peak okay this is a representation of a peak you've got a side view on the top and then you have what it might look like on a map down at the bottom and if you notice where the little on the bottom where that little triangle is that is the center of the peak now what denotes the actual peak is the smallest enclosed circle on that on that picture that does not have any other contour lines inside of it and that would that smallest circle is what's going to tell you that's the very top of the peak the the triangle doesn't necessarily it's not on all Peaks so don't use that as a reference it's basically just the small enclosed circle and that's going to let you know at the very top of that of that terrain feature ok so here's another look at a peak just a basic Hill and the picture

FAQ

How do I delineate a water catchment area for a road using a topographical map with ridge?
You trace a line around the highest points of slopes adjacent to the road.
If I want to become an entrepreneur, where do I start?
I think this is the wrong approach. Too many people become entrepreneurs for the wrong reasons, which may contribute to the extremely high failure rate. They want to be entrepreneurs because they focus too much on the success stories and not enough on the failures, and have no idea how hard it really is.People should not just wake up one day and decide they want to be an entrepreneur. It should happen as a result of some inefficiency/problem you discover within your own life. Don't find entrepreneurship, let entrepreneurship find you and you'll have a better chance.I used to work at OpenTable. The founder of OpenTable came up with the idea because he watched his wife struggle for hours on the phone trying to make restaurant reservations for visiting guests. He thought to himself there had to be a better way. Well, there wasn't - and the rest is history.But once you have an idea, that's just the very beginning. Chances are many other people have that same idea, so how are you going to give yourself an advantage on executing that idea better than the others? This is where your passion, domain expertise, background, industry knowledge, network, etc. can give you a competitive advantage. Without it, you're just another guy with an idea.So what am I getting at here? Instead of focusing on how to become an entrepreneur, focus on your passions. What do you excel at? Focus on developing some serious domain expertise in a particular area that interests you personally. In doing so, you'll discover areas that can be improved and problems that exist and need solutions. You'll learn about how big the market is, demographics, competitors, and build important connections. This process could take years, but it could be the difference of whether you fail or succeed. Also, how can you expect to relate to your customer base if you're trying to solve a problem for them that you didn't experience yourself? How can you know the best way to improve a process that you never experienced trouble with in the first place?In summary, don't become an entrepreneur for the sake of becoming one. Just follow your passions in life. Excel in an area of deep interest. Learn something so well that you can teach it to others one day, or talk/demonstrate about it in a way where thousands will listen/watch. Try to influence people in a positive way by your actions and/or knowledge.If you take this route, I'm pretty sure somewhere along the way entrepreneurship will find you and you'll be ready. And if it doesn't, so be it. Don't force it - your hard work will pay off one way or another.MikeCTO/FounderTradeFix.io
How can I become a data scientist?
Here are some amazing and completely free resources online that you can use to teach yourself data science.Besides this page, I would highly recommend the Official Quora Data Science FAQ as your comprehensive guide to data science! It includes resources similar to this one, as well as advice on preparing for data science interviews. Additionally, follow the Quora Data Science topic if you haven't already to get updates on new questions and answers!Step 1. Fulfill your prerequisitesBefore you begin, you need Multivariable Calculus, Linear Algebra, and Python. If your math background is up to multivariable calculus and linear algebra, you'll have enough background to understand almost all of the probability / statistics / machine learning for the job.Multivariate Calculus: What are the best resources for mastering multivariable calculus?Numerical Linear Algebra / Computational Linear Algebra / Matrix Algebra: Linear Algebra, Introduction to Linear Models and Matrix Algebra. Avoid linear algebra classes that are too theoretical, you need a linear algebra class that works with real matrices.Multivariate calculus is useful for some parts of machine learning and a lot of probability. Linear / Matrix algebra is absolutely necessary for a lot of concepts in machine learning.You also need some programming background to begin, preferably in Python. Most other things on this guide can be learned on the job (like random forests, pandas, A/B testing), but you can't get away without knowing how to program!Python is the most important language for a data scientist to learn. To learn to code, more about Python, and why Python is so important, check outHow do I learn to code?How do I learn Python?Why is Python a language of choice for data scientists?Is Python the most important programming language to learn for aspiring data scientists and data miners?R is the second most important language for a data scientist to learn. I’m saying this as someone with a statistics background and who went through undergrad mainly only using R. While R is powerful for dedicated statistical tasks, Python is more versatile as it will connect you more to production-level work.If you're currently in school, take statistics and computer science classes. Check out What classes should I take if I want to become a data scientist?Step 2. Plug Yourself Into the CommunityCheck out Meetup to find some that interest you! Attend an interesting talk, learn about data science live, and meet data scientists and other aspirational data scientists. Start reading data science blogs and following influential data scientists:What are the best, insightful blogs about data, including how businesses are using data?What is your source of machine learning and data science news? Why?What are some best data science accounts to follow on Twitter, Facebook, G+, and LinkedIn?What are the best Twitter accounts about data?Step 3. Setup and Learn to use your toolsPythonInstall Python, iPython, and related libraries (guide)How do I learn Python?RInstall R and RStudio (It's good to know both Python and R)Learn R with swirlSublime TextInstall Sublime TextWhat's the best way to learn to use Sublime Text?SQLHow do I learn SQL? What are some good online resources, like websites, blogs, or videos? (You can practice it using the sqlite package in Python)Step 4. Learn Probability and StatisticsBe sure to go through a course that involves heavy application in R or Python. Knowing probability and statistics will only really be helpful if you can implement what you learn.Python Application: Think Stats (free pdf) (Python focus)R Applications: An Introduction to Statistical Learning (free pdf)(MOOC) (R focus)Print out a copy of Probability CheatsheetStep 5. Complete Harvard's Data Science CourseAs of Fall 2015, the course is currently in its third year and strives to be as applicable and helpful as possible for students who are interested in becoming data scientists. An example of how is this happening is the introduction of Spark and SQL starting this year.I'd recommend doing the labs and lectures from 2015 and the homeworks from 2013 (2015 homeworks are not available to the public, and the 2014 homeworks are written under a different instructor than the original instructors).This course is developed in part by a fellow Quora user, Professor Joe Blitzstein. Here are all of the materials!Intro to the classWhat is it like to design a data science class? In particular, what was it like to design Harvard's new data science class, taught by professors Joe Blitzstein and Hanspeter Pfister?What is it like to take CS 109/Statistics 121 (Data Science) at Harvard?Course MaterialsClass main page: CS109 Data ScienceLectures, Slides, and Labs: Class MaterialAssignmentsIntro to Python, Numpy, Matplotlib (Homework 0) (Solutions)Poll Aggregation, Web Scraping, Plotting, Model Evaluation, and Forecasting (Homework 1) (Solutions)Data Prediction, Manipulation, and Evaluation (Homework 2) (Solutions)Predictive Modeling, Model Calibration, Sentiment Analysis (Homework 3) (Solutions)Recommendation Engines, Using Mapreduce (Homework 4) (Solutions)Network Visualization and Analysis (Homework 5) (Solutions)Labs(these are the 2013 labs. For the 2015 labs, check out Class Material)Lab 2: Web ScrapingLab 3: EDA, Pandas, MatplotlibLab 4: Scikit-Learn, Regression, PCALab 5: Bias, Variance, Cross-ValidationLab 6: Bayes, Linear Regression, and Metropolis SamplingLab 7: Gibbs SamplingLab 8: MapReduceLab 9: NetworksLab 10: Support Vector MachinesStep 6. Do all of Kaggle's Getting Started and Playground CompetitionsI would NOT recommend doing any of the prize-money competitions. They usually have datasets that are too large, complicated, or annoying, and are not good for learning. The competitions are available at Competitions | KaggleStart by learning scikit-learn, playing around, reading through tutorials and forums on the competitions that you’re doing. Next, play around some more and check out the tutorials for Titanic: Machine Learning from Disaster for a binary classification task (with categorical variables, missing values, etc.)Afterwards, try some multi-class classification with Forest Cover Type Prediction. Now, try a regression task House Prices: Advanced Regression Techniques. Try out some natural language processing with Quora Question Pairs | Kaggle. Finally, try out any of the other knowledge-based competitions that interest you!Step 7. Learn Some Data Science ElectivesData science is an incredibly large and interdisciplinary field, and different jobs will require different skillsets. Here are some of the more common ones:Product Metrics will teach you about what companies track, what metrics they find important, and how companies measure their success: The 27 Metrics in Pinterest’s Internal Growth DashboardMachine Learning How do I learn machine learning? This is an extremely rich area with massive amounts of potential, and likely the “sexiest” area of data science today. Andrew Ng's Machine Learning course on Coursera is one of the most popular MOOCs, and a great way to start! Andrew Ng's Machine Learning MOOCA/B Testing is incredibly important to help inform product decisions for consumer applications. Learn more about A/B testing here: How do I learn about A/B testing?Visualization - I would recommend picking up ggplot2 in R to make simple yet beautiful graphics and just browsing DataIsBeautiful • /r/dataisbeautiful and FlowingData for ideas and inspiration.User Behavior - This set of blogs posts looks useful and interesting - This Explains Everything " User BehaviorFeature Engineering - Check out What are some best practices in Feature Engineering? and this great example: http://nbviewer.ipython.org/gith...Big Data Technologies - These are tools and frameworks developed specifically to deal with massive amounts of data. How do I learn big data technologies?Optimization will help you with understanding statistics and machine learning: Convex Optimization - Boyd and VandenbergheNatural Language Processing - This is the practice of turning text data into numerical data whilst still preserving the "meaning". Learning this will let you analyze new, exciting forms of data. How do I learn Natural Language Processing (NLP)?Time Series Analysis - How do I learn about time series analysis?Step 8. Do a Capstone Product / Side ProjectUse your new data science and software engineering skills to build something that will make other people say wow! This can be a website, new way of looking at a dataset, cool visualization, or anything!What are some good toy problems (can be done over a weekend by a single coder) in data science? I'm studying machine learning and statistics, and looking for something socially relevant using publicly available datasets/APIs.How can I start building a recommendation engine? Where can I find an interesting data set? What tools/technologies/algorithms are best to build the engine with? How do I check the effectiveness of recommendations?What are some ideas for a quick weekend Python project? I am looking to gain some experience.What is a good measure of the influence of a Twitter user?Where can I find large datasets open to the public?What are some good algorithms for a prioritized inbox?What are some good data science projects?Create public github repositories, make a blog, and post your work, side projects, Kaggle solutions, insights, and thoughts! This helps you gain visibility, build a portfolio for your resume, and connect with other people working on the same tasks.Step 9. Get a Data Science Internship or JobHow do I prepare for a data scientist interview?How should I prepare for statistics questions for a data science interviewWhat kind of A/B testing questions should I expect in a data scientist interview and how should I prepare for such questions?What companies have data science internships for undergraduates?What are some tips to choose whether I want to apply for a Data Science or Software Engineering internship?When is the best time to apply for data science summer internships?Check out The Official Quora Data Science FAQ for more discussion on internships, jobs, and data science interview processes! The data science FAQ also links to more specific versions of this question, like How do I become a data scientist without a PhD? or the counterpart, How do I become a data scientist as a PhD student?Step 10. Share your Wisdom Back with the Data Science CommunityIf you’ve made it this far, congratulations on becoming a data scientist! I’d encourage you to share your knowledge and what you’ve learned back with the data science community. Data Science as a nascent field depends on knowledge-sharing!Think like a Data ScientistIn addition to the concrete steps I listed above to develop the skill set of a data scientist, I include seven challenges below so you can learn to think like a data scientist and develop the right attitude to become one.(1) Satiate your curiosity through dataAs a data scientist you write your own questions and answers. Data scientists are naturally curious about the data that they're looking at, and are creative with ways to approach and solve whatever problem needs to be solved.Much of data science is not the analysis itself, but discovering an interesting question and figuring out how to answer it.Here are two great examples:Hilary: the most poisoned baby name in US historyA Look at Fire Response DataChallenge: Think of a problem or topic you're interested in and answer it with data!(2) Read news with a skeptical eyeMuch of the contribution of a data scientist (and why it's really hard to replace a data scientist with a machine), is that a data scientist will tell you what's important and what's spurious. This persistent skepticism is healthy in all sciences, and is especially necessarily in a fast-paced environment where it's too easy to let a spurious result be misinterpreted.You can adopt this mindset yourself by reading news with a critical eye. Many news articles have inherently flawed main premises. Try these two articles. Sample answers are available in the comments.Easier: You Love Your iPhone. Literally.Harder: Who predicted Russia’s military intervention?Challenge: Do this every day when you encounter a news article. Comment on the article and point out the flaws.(3) See data as a tool to improve consumer productsVisit a consumer internet product (probably that you know doesn't do extensive A/B testing already), and then think about their main funnel. Do they have a checkout funnel? Do they have a signup funnel? Do they have a virility mechanism? Do they have an engagement funnel?Go through the funnel multiple times and hypothesize about different ways it could do better to increase a core metric (conversion rate, shares, signups, etc.). Design an experiment to verify if your suggested change can actually change the core metric.Challenge: Share it with the feedback email for the consumer internet site!(4) Think like a BayesianTo think like a Bayesian, avoid the Base rate fallacy. This means to form new beliefs you must incorporate both newly observed information AND prior information formed through intuition and experience.Checking your dashboard, user engagement numbers are significantly down today. Which of the following is most likely?1. Users are suddenly less engaged2. Feature of site broke3. Logging feature brokeEven though explanation #1 completely explains the drop, #2 and #3 should be more likely because they have a much higher prior probability.You're in senior management at Tesla, and five of Tesla's Model S's have caught fire in the last five months. Which is more likely?1. Manufacturing quality has decreased and Teslas should now be deemed unsafe.2. Safety has not changed and fires in Tesla Model S's are still much rarer than their counterparts in gasoline cars.While #1 is an easy explanation (and great for media coverage), your prior should be strong on #2 because of your regular quality testing. However, you should still be seeking information that can update your beliefs on #1 versus #2 (and still find ways to improve safety). Question for thought: what information should you seek?Challenge: Identify the last time you committed the Base Rate Fallacy. Avoid committing the fallacy from now on.(5) Know the limitations of your tools“Knowledge is knowing that a tomato is a fruit, wisdom is not putting it in a fruit salad.” - Miles KingtonKnowledge is knowing how to perform a ordinary linear regression, wisdom is realizing how rare it applies cleanly in practice.Knowledge is knowing five different variations of K-means clustering, wisdom is realizing how rarely actual data can be cleanly clustered, and how poorly K-means clustering can work with too many features.Knowledge is knowing a vast range of sophisticated techniques, but wisdom is being able to choose the one that will provide the most amount of impact for the company in a reasonable amount of time.You may develop a vast range of tools while you go through your Coursera or EdX courses, but your toolbox is not useful until you know which tools to use.Challenge: Apply several tools to a real dataset and discover the tradeoffs and limitations of each tools. Which tools worked best, and can you figure out why?(6) Teach a complicated conceptHow does Richard Feynman distinguish which concepts he understands and which concepts he doesn't?Feynman was a truly great teacher. He prided himself on being able to devise ways to explain even the most profound ideas to beginning students. Once, I said to him, "Dick, explain to me, so that I can understand it, why spin one-half particles obey Fermi-Dirac statistics." Sizing up his audience perfectly, Feynman said, "I'll prepare a freshman lecture on it." But he came back a few days later to say, "I couldn't do it. I couldn't reduce it to the freshman level. That means we don't really understand it." - David L. Goodstein, Feynman's Lost Lecture: The Motion of Planets Around the SunWhat distinguished Richard Feynman was his ability to distill complex concepts into comprehendible ideas. Similarly, what distinguishes top data scientists is their ability to cogently share their ideas and explain their analyses.Check out https://www.quora.com/Edwin-Chen... for examples of cogently-explained technical concepts.Challenge: Teach a technical concept to a friend or on a public forum, like Quora or YouTube.(7) Convince others about what's importantPerhaps even more important than a data scientist's ability to explain their analysis is their ability to communicate the value and potential impact of the actionable insights.Certain tasks of data science will be commoditized as data science tools become better and better. New tools will make obsolete certain tasks such as writing dashboards, unnecessary data wrangling, and even specific kinds of predictive modeling.However, the need for a data scientist to extract out and communicate what's important will never be made obsolete. With increasing amounts of data and potential insights, companies will always need data scientists (or people in data science-like roles), to triage all that can be done and prioritize tasks based on impact.The data scientist's role in the company is the serve as the ambassador between the data and the company. The success of a data scientist is measured by how well he/she can tell a story and make an impact. Every other skill is amplified by this ability.Challenge: Tell a story with statistics. Communicate the important findings in a dataset. Make a convincing presentation that your audience cares about.Good luck and best wishes on your journey to becoming a data scientist! For more resources check out Quora’s official Quora Data Science FAQ
What are the best customer development questions to ask when the goal is to gather inputs for building out your road map?
It's not clear whether you are asking about gathering customer requirements prior to them signing up or after they have signed up and started using the product. Let's assume that this is prior to actually having a problem.After starting or being an early employee of six software companies, including now at Aha! -- the new way to create brilliant product roadmaps I suggest that the fundamental question to ask is the following "what are you trying to do?"This assumes that you and the customer are generally speaking the same language about the same problem area and opens up the conversation. It allows the customer to explain what they are trying to accomplish and very likely why it is hard, expensive, or not possible today. It will likely also expose the emotional and economic impact the customer is experiencing by not being able to achieve their objective. Start with the customer challenge and understand it's impact and you will learn what it will take to solve it and whether it's worth it for you to try.
Could somebody draw a road map on how to learn AI from zero?
AI (artificial intelligence) is the simulation of human intelligence processes by machines, especially computer systems. If you are a beginner then it is better to learn from online resources… from online, you can learn from basics to advanced concepts. These processes include learning , reasoning and self-correction. Below are theBest Artificial Intelligence Online Courses:Artificial Intelligence A-Z™: Learn How To Build An AIArtificial Intelligence: Reinforcement Learning in PythonAdvanced AI: Deep Reinforcement Learning in PythonChoose the first course..From this course you may learn about:1. Complete beginner to expert AI skills – Learn to code self-improving AI for a range of purposes. In fact, we code together with you. Every tutorial starts with a blank page and we write up the code from scratch. This way you can follow along and understand exactly how the code comes together and what each line means.2. Code templates – Plus, you’ll get downloadable Python code templates for every AI you build in the course. This makes building truly unique AI as simple as changing a few lines of code. If you unleash your imagination, the potential is unlimited.3. Intuition Tutorials – Where most courses simply bombard you with dense theory and set you on your way, we believe in developing a deep understanding for not only what you’re doing, but why you’re doing it. That’s why we don’t throw complex mathematics at you, but focus on building up your intuition in coding AI making for infinitely better results down the line.And also..Build an AIUnderstand the theory behind Artificial IntelligenceMake a virtual Self Driving CarMake an AI to beat gamesSolve Real World Problems with AIMaster the State of the Art AI modelsQ-LearningALL THE BEST...
How does Google Maps stay updated with road maps?
The roads are up to date primarily by the users in the particular community/area/region. There are super users/trusted users in most of the regions around the globe who make sure any modification in the roads/places of interest in their area are updated on maps. Google communicates with these users on the mapmaker interface/forums/private to confirm changes but only after supported documentation is provided. Also, Google has third party data provided either by the government and property owners like the layout plans of the localities/neighborhoods. These plans can also be found the government websites sometimes. Say, if the state decides on building a new freeway bypassing a city. The plan for this freeway can be found on the government websites in most cases. This will be used as a reference and further action is taken depending upon the situation by Google. They also have access to many resources like updated satellite images and sensing data which is used for updating the roads. But most of the times it is because of the users, the roads on maps are updated
Is there a map creator out there that will allow me to colour/fill in regions/states/provinces of countries rather than only the whole country itself?
There are a few blank maps on Wikipedia (both as SVG and PNG) that include subdivisions, such as:These can be shaded using graphics software such as Inkscape or GIMP (using the palette, bucket, selection and color selection tools). For example, this is how I recently created the following map, which includes the Chinese provinces and Indian states:
Get Form